ADVANCED DATA STRUCTURES LAB

II B. TECH- II SEMESTER: CSE/IT/CSIT

Course Code A5CS10	Category PCC	Hours / Week			Credits	Maximum Marks		
		L	Т	Р	С	CIE	SEE	Total
		_	_	3	1.5	30	70	100

COURSE OBJECTIVES:

The course should enable the students to:

- 1. Ability to identify the appropriate data structure for given problem.
- 2. Effectively use compilers include library functions, debuggers and trouble shooting.
- 3. Write and execute programs using data structures such as arrays, linked lists to implement stacks, queues.
- 4. Write and execute programs in C to implement various sorting and searching.

COURSE OUTCOMES:

The course should enable the students to:

- Use appropriate data structure for given problem.
- 2. Use compilers include library functions, debuggers and trouble shooting.
- 3. Execute programs in C to implement Linked List.
- 4. Execute programs to implement Dictionary and HashTable.
- 5. Execute programs using data structures such as Trees & Graphs.
- 6. Execute programs in C to implement text processing algorithms.

LIST OF EXPERIMENTS

WEEK-1

SINGLE LINKED LIST

Write a C program that uses functions to perform the following:

- a. Create a singly linked list of integers.
- b. Delete a given integer from the above linked list.
- c. Display the contents of the above list after deletion.

WEEK-2 DICTIONARY

Write a C program to implement Dictionary ADT using Linked List.

WEEK-3 HASH TABLE

Write a C program to implement Collision Resolution Techniques:

- a. Linear Probing
- b. Chaining

WEEK-4

BINARY TREES USING RESURSION

Write a C program that uses functions to perform the following:

- a. Create a binary tree of integers
- b. Traverse the above Binary tree recursively in PreOrder, InOrder and PostOrder.

WEEK-5

BINARY TREES USING NON-RESURSION

Write a C program that uses functions to perform the following:

- a. Create a binary tree of integers.
- b. Traverse the above Binary tree non-recursively in PreOrder, InOrder and PostOrder.

WEEK-6

PRIORITY QUEUE

- a. Write C programs to implement Priority Queue ADT
- b. Write a C Program to sort given list of integers using Heap Sort.

WEEK-7 GRAPH

Write C programs to implement Graph Representations

a) Adjacency Matrix b) Adjacency List

WEEK-8

GRAPH TRAVERSAL ALGORITHMS

Write C programs for implementing the following graph traversal algorithms: a)Depth first traversal b) Breadth first traversal

WEEK-9

BINARY SEARCH TREE USING RESURSION

Write a C program that uses functions to perform the following:

- a. Create a binary tree of integers
- b. Traverse the above Binary tree recursively in PreOrder, InOrder and PostOrder.

WEEK-10

BINARY SEARCH TREE USING NON-RESURSION

Write a C program that uses functions to perform the following:

- a. Create a binary tree of integers.
- b. Traverse the above Binary tree non-recursively in PreOrder, InOrder and PostOrder.

WEEK-11 AVL TREE

Write a C program to perform the following operations on AVL:

- a. Insertion into an AVL.
- b. Display elements of AVL Tree

WEEK-12

TEXT PROCESSING

Write a C Program to implement KMP Algorithm.

TEXT BOOKS:

- 1. C and Data Structures, Prof. P.S.Deshpande and Prof. O.G. Kakde, Dreamtech Press.
- 2. Data structures using C, A.K.Sharma, 2nd edition, Pearson.
- Data Structures using C, R.Thareja, Oxford University Press.

WEB REFERENCES:

- 1. http://www.sanfoundry.com/data structures-examples
- 2. http://www.geeksforgeeks.org/c
- 3. http://www.cs.princeton.edu